Termination w.r.t. Q of the following Term Rewriting System could not be shown:

Q restricted rewrite system:
The TRS R consists of the following rules:

0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(x, +(y, z)) → +(+(x, y), z)
-(x, #) → x
-(#, x) → #
-(0(x), 0(y)) → 0(-(x, y))
-(0(x), 1(y)) → 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) → 1(-(x, y))
-(1(x), 1(y)) → 0(-(x, y))
not(false) → true
not(true) → false
and(x, true) → x
and(x, false) → false
if(true, x, y) → x
if(false, x, y) → y
ge(0(x), 0(y)) → ge(x, y)
ge(0(x), 1(y)) → not(ge(y, x))
ge(1(x), 0(y)) → ge(x, y)
ge(1(x), 1(y)) → ge(x, y)
ge(x, #) → true
ge(#, 1(x)) → false
ge(#, 0(x)) → ge(#, x)
val(l(x)) → x
val(n(x, y, z)) → x
min(l(x)) → x
min(n(x, y, z)) → min(y)
max(l(x)) → x
max(n(x, y, z)) → max(z)
bs(l(x)) → true
bs(n(x, y, z)) → and(and(ge(x, max(y)), ge(min(z), x)), and(bs(y), bs(z)))
size(l(x)) → 1(#)
size(n(x, y, z)) → +(+(size(x), size(y)), 1(#))
wb(l(x)) → true
wb(n(x, y, z)) → and(if(ge(size(y), size(z)), ge(1(#), -(size(y), size(z))), ge(1(#), -(size(z), size(y)))), and(wb(y), wb(z)))

Q is empty.


QTRS
  ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(x, +(y, z)) → +(+(x, y), z)
-(x, #) → x
-(#, x) → #
-(0(x), 0(y)) → 0(-(x, y))
-(0(x), 1(y)) → 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) → 1(-(x, y))
-(1(x), 1(y)) → 0(-(x, y))
not(false) → true
not(true) → false
and(x, true) → x
and(x, false) → false
if(true, x, y) → x
if(false, x, y) → y
ge(0(x), 0(y)) → ge(x, y)
ge(0(x), 1(y)) → not(ge(y, x))
ge(1(x), 0(y)) → ge(x, y)
ge(1(x), 1(y)) → ge(x, y)
ge(x, #) → true
ge(#, 1(x)) → false
ge(#, 0(x)) → ge(#, x)
val(l(x)) → x
val(n(x, y, z)) → x
min(l(x)) → x
min(n(x, y, z)) → min(y)
max(l(x)) → x
max(n(x, y, z)) → max(z)
bs(l(x)) → true
bs(n(x, y, z)) → and(and(ge(x, max(y)), ge(min(z), x)), and(bs(y), bs(z)))
size(l(x)) → 1(#)
size(n(x, y, z)) → +(+(size(x), size(y)), 1(#))
wb(l(x)) → true
wb(n(x, y, z)) → and(if(ge(size(y), size(z)), ge(1(#), -(size(y), size(z))), ge(1(#), -(size(z), size(y)))), and(wb(y), wb(z)))

Q is empty.

Using Dependency Pairs [1,13] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

BS(n(x, y, z)) → GE(x, max(y))
-1(0(x), 1(y)) → -1(-(x, y), 1(#))
GE(1(x), 0(y)) → GE(x, y)
GE(0(x), 1(y)) → GE(y, x)
SIZE(n(x, y, z)) → +1(+(size(x), size(y)), 1(#))
+1(x, +(y, z)) → +1(+(x, y), z)
+1(1(x), 1(y)) → 01(+(+(x, y), 1(#)))
-1(1(x), 0(y)) → -1(x, y)
-1(0(x), 1(y)) → -1(x, y)
SIZE(n(x, y, z)) → +1(size(x), size(y))
BS(n(x, y, z)) → BS(z)
WB(n(x, y, z)) → GE(1(#), -(size(y), size(z)))
WB(n(x, y, z)) → GE(1(#), -(size(z), size(y)))
WB(n(x, y, z)) → AND(if(ge(size(y), size(z)), ge(1(#), -(size(y), size(z))), ge(1(#), -(size(z), size(y)))), and(wb(y), wb(z)))
BS(n(x, y, z)) → AND(and(ge(x, max(y)), ge(min(z), x)), and(bs(y), bs(z)))
GE(0(x), 1(y)) → NOT(ge(y, x))
SIZE(n(x, y, z)) → SIZE(y)
+1(x, +(y, z)) → +1(x, y)
SIZE(n(x, y, z)) → SIZE(x)
WB(n(x, y, z)) → SIZE(y)
WB(n(x, y, z)) → SIZE(z)
BS(n(x, y, z)) → BS(y)
MIN(n(x, y, z)) → MIN(y)
+1(0(x), 1(y)) → +1(x, y)
+1(1(x), 0(y)) → +1(x, y)
+1(1(x), 1(y)) → +1(+(x, y), 1(#))
WB(n(x, y, z)) → AND(wb(y), wb(z))
-1(1(x), 1(y)) → 01(-(x, y))
BS(n(x, y, z)) → MAX(y)
WB(n(x, y, z)) → GE(size(y), size(z))
+1(0(x), 0(y)) → +1(x, y)
-1(0(x), 0(y)) → 01(-(x, y))
MAX(n(x, y, z)) → MAX(z)
WB(n(x, y, z)) → -1(size(y), size(z))
WB(n(x, y, z)) → -1(size(z), size(y))
BS(n(x, y, z)) → AND(ge(x, max(y)), ge(min(z), x))
+1(0(x), 0(y)) → 01(+(x, y))
WB(n(x, y, z)) → WB(z)
GE(1(x), 1(y)) → GE(x, y)
+1(1(x), 1(y)) → +1(x, y)
-1(0(x), 0(y)) → -1(x, y)
WB(n(x, y, z)) → WB(y)
GE(#, 0(x)) → GE(#, x)
BS(n(x, y, z)) → MIN(z)
BS(n(x, y, z)) → GE(min(z), x)
BS(n(x, y, z)) → AND(bs(y), bs(z))
WB(n(x, y, z)) → IF(ge(size(y), size(z)), ge(1(#), -(size(y), size(z))), ge(1(#), -(size(z), size(y))))
GE(0(x), 0(y)) → GE(x, y)
-1(1(x), 1(y)) → -1(x, y)

The TRS R consists of the following rules:

0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(x, +(y, z)) → +(+(x, y), z)
-(x, #) → x
-(#, x) → #
-(0(x), 0(y)) → 0(-(x, y))
-(0(x), 1(y)) → 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) → 1(-(x, y))
-(1(x), 1(y)) → 0(-(x, y))
not(false) → true
not(true) → false
and(x, true) → x
and(x, false) → false
if(true, x, y) → x
if(false, x, y) → y
ge(0(x), 0(y)) → ge(x, y)
ge(0(x), 1(y)) → not(ge(y, x))
ge(1(x), 0(y)) → ge(x, y)
ge(1(x), 1(y)) → ge(x, y)
ge(x, #) → true
ge(#, 1(x)) → false
ge(#, 0(x)) → ge(#, x)
val(l(x)) → x
val(n(x, y, z)) → x
min(l(x)) → x
min(n(x, y, z)) → min(y)
max(l(x)) → x
max(n(x, y, z)) → max(z)
bs(l(x)) → true
bs(n(x, y, z)) → and(and(ge(x, max(y)), ge(min(z), x)), and(bs(y), bs(z)))
size(l(x)) → 1(#)
size(n(x, y, z)) → +(+(size(x), size(y)), 1(#))
wb(l(x)) → true
wb(n(x, y, z)) → and(if(ge(size(y), size(z)), ge(1(#), -(size(y), size(z))), ge(1(#), -(size(z), size(y)))), and(wb(y), wb(z)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
QDP
      ↳ EdgeDeletionProof

Q DP problem:
The TRS P consists of the following rules:

BS(n(x, y, z)) → GE(x, max(y))
-1(0(x), 1(y)) → -1(-(x, y), 1(#))
GE(1(x), 0(y)) → GE(x, y)
GE(0(x), 1(y)) → GE(y, x)
SIZE(n(x, y, z)) → +1(+(size(x), size(y)), 1(#))
+1(x, +(y, z)) → +1(+(x, y), z)
+1(1(x), 1(y)) → 01(+(+(x, y), 1(#)))
-1(1(x), 0(y)) → -1(x, y)
-1(0(x), 1(y)) → -1(x, y)
SIZE(n(x, y, z)) → +1(size(x), size(y))
BS(n(x, y, z)) → BS(z)
WB(n(x, y, z)) → GE(1(#), -(size(y), size(z)))
WB(n(x, y, z)) → GE(1(#), -(size(z), size(y)))
WB(n(x, y, z)) → AND(if(ge(size(y), size(z)), ge(1(#), -(size(y), size(z))), ge(1(#), -(size(z), size(y)))), and(wb(y), wb(z)))
BS(n(x, y, z)) → AND(and(ge(x, max(y)), ge(min(z), x)), and(bs(y), bs(z)))
GE(0(x), 1(y)) → NOT(ge(y, x))
SIZE(n(x, y, z)) → SIZE(y)
+1(x, +(y, z)) → +1(x, y)
SIZE(n(x, y, z)) → SIZE(x)
WB(n(x, y, z)) → SIZE(y)
WB(n(x, y, z)) → SIZE(z)
BS(n(x, y, z)) → BS(y)
MIN(n(x, y, z)) → MIN(y)
+1(0(x), 1(y)) → +1(x, y)
+1(1(x), 0(y)) → +1(x, y)
+1(1(x), 1(y)) → +1(+(x, y), 1(#))
WB(n(x, y, z)) → AND(wb(y), wb(z))
-1(1(x), 1(y)) → 01(-(x, y))
BS(n(x, y, z)) → MAX(y)
WB(n(x, y, z)) → GE(size(y), size(z))
+1(0(x), 0(y)) → +1(x, y)
-1(0(x), 0(y)) → 01(-(x, y))
MAX(n(x, y, z)) → MAX(z)
WB(n(x, y, z)) → -1(size(y), size(z))
WB(n(x, y, z)) → -1(size(z), size(y))
BS(n(x, y, z)) → AND(ge(x, max(y)), ge(min(z), x))
+1(0(x), 0(y)) → 01(+(x, y))
WB(n(x, y, z)) → WB(z)
GE(1(x), 1(y)) → GE(x, y)
+1(1(x), 1(y)) → +1(x, y)
-1(0(x), 0(y)) → -1(x, y)
WB(n(x, y, z)) → WB(y)
GE(#, 0(x)) → GE(#, x)
BS(n(x, y, z)) → MIN(z)
BS(n(x, y, z)) → GE(min(z), x)
BS(n(x, y, z)) → AND(bs(y), bs(z))
WB(n(x, y, z)) → IF(ge(size(y), size(z)), ge(1(#), -(size(y), size(z))), ge(1(#), -(size(z), size(y))))
GE(0(x), 0(y)) → GE(x, y)
-1(1(x), 1(y)) → -1(x, y)

The TRS R consists of the following rules:

0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(x, +(y, z)) → +(+(x, y), z)
-(x, #) → x
-(#, x) → #
-(0(x), 0(y)) → 0(-(x, y))
-(0(x), 1(y)) → 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) → 1(-(x, y))
-(1(x), 1(y)) → 0(-(x, y))
not(false) → true
not(true) → false
and(x, true) → x
and(x, false) → false
if(true, x, y) → x
if(false, x, y) → y
ge(0(x), 0(y)) → ge(x, y)
ge(0(x), 1(y)) → not(ge(y, x))
ge(1(x), 0(y)) → ge(x, y)
ge(1(x), 1(y)) → ge(x, y)
ge(x, #) → true
ge(#, 1(x)) → false
ge(#, 0(x)) → ge(#, x)
val(l(x)) → x
val(n(x, y, z)) → x
min(l(x)) → x
min(n(x, y, z)) → min(y)
max(l(x)) → x
max(n(x, y, z)) → max(z)
bs(l(x)) → true
bs(n(x, y, z)) → and(and(ge(x, max(y)), ge(min(z), x)), and(bs(y), bs(z)))
size(l(x)) → 1(#)
size(n(x, y, z)) → +(+(size(x), size(y)), 1(#))
wb(l(x)) → true
wb(n(x, y, z)) → and(if(ge(size(y), size(z)), ge(1(#), -(size(y), size(z))), ge(1(#), -(size(z), size(y)))), and(wb(y), wb(z)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We deleted some edges using various graph approximations

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
QDP
          ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

BS(n(x, y, z)) → GE(x, max(y))
-1(0(x), 1(y)) → -1(-(x, y), 1(#))
GE(0(x), 1(y)) → GE(y, x)
GE(1(x), 0(y)) → GE(x, y)
SIZE(n(x, y, z)) → +1(+(size(x), size(y)), 1(#))
+1(x, +(y, z)) → +1(+(x, y), z)
+1(1(x), 1(y)) → 01(+(+(x, y), 1(#)))
-1(0(x), 1(y)) → -1(x, y)
-1(1(x), 0(y)) → -1(x, y)
SIZE(n(x, y, z)) → +1(size(x), size(y))
BS(n(x, y, z)) → BS(z)
WB(n(x, y, z)) → GE(1(#), -(size(z), size(y)))
WB(n(x, y, z)) → GE(1(#), -(size(y), size(z)))
WB(n(x, y, z)) → AND(if(ge(size(y), size(z)), ge(1(#), -(size(y), size(z))), ge(1(#), -(size(z), size(y)))), and(wb(y), wb(z)))
BS(n(x, y, z)) → AND(and(ge(x, max(y)), ge(min(z), x)), and(bs(y), bs(z)))
SIZE(n(x, y, z)) → SIZE(y)
GE(0(x), 1(y)) → NOT(ge(y, x))
+1(x, +(y, z)) → +1(x, y)
SIZE(n(x, y, z)) → SIZE(x)
WB(n(x, y, z)) → SIZE(y)
WB(n(x, y, z)) → SIZE(z)
BS(n(x, y, z)) → BS(y)
MIN(n(x, y, z)) → MIN(y)
+1(1(x), 0(y)) → +1(x, y)
+1(0(x), 1(y)) → +1(x, y)
+1(1(x), 1(y)) → +1(+(x, y), 1(#))
WB(n(x, y, z)) → AND(wb(y), wb(z))
-1(1(x), 1(y)) → 01(-(x, y))
BS(n(x, y, z)) → MAX(y)
WB(n(x, y, z)) → GE(size(y), size(z))
+1(0(x), 0(y)) → +1(x, y)
-1(0(x), 0(y)) → 01(-(x, y))
WB(n(x, y, z)) → -1(size(z), size(y))
WB(n(x, y, z)) → -1(size(y), size(z))
MAX(n(x, y, z)) → MAX(z)
BS(n(x, y, z)) → AND(ge(x, max(y)), ge(min(z), x))
+1(0(x), 0(y)) → 01(+(x, y))
WB(n(x, y, z)) → WB(z)
GE(1(x), 1(y)) → GE(x, y)
+1(1(x), 1(y)) → +1(x, y)
-1(0(x), 0(y)) → -1(x, y)
WB(n(x, y, z)) → WB(y)
BS(n(x, y, z)) → MIN(z)
GE(#, 0(x)) → GE(#, x)
BS(n(x, y, z)) → GE(min(z), x)
BS(n(x, y, z)) → AND(bs(y), bs(z))
WB(n(x, y, z)) → IF(ge(size(y), size(z)), ge(1(#), -(size(y), size(z))), ge(1(#), -(size(z), size(y))))
GE(0(x), 0(y)) → GE(x, y)
-1(1(x), 1(y)) → -1(x, y)

The TRS R consists of the following rules:

0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(x, +(y, z)) → +(+(x, y), z)
-(x, #) → x
-(#, x) → #
-(0(x), 0(y)) → 0(-(x, y))
-(0(x), 1(y)) → 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) → 1(-(x, y))
-(1(x), 1(y)) → 0(-(x, y))
not(false) → true
not(true) → false
and(x, true) → x
and(x, false) → false
if(true, x, y) → x
if(false, x, y) → y
ge(0(x), 0(y)) → ge(x, y)
ge(0(x), 1(y)) → not(ge(y, x))
ge(1(x), 0(y)) → ge(x, y)
ge(1(x), 1(y)) → ge(x, y)
ge(x, #) → true
ge(#, 1(x)) → false
ge(#, 0(x)) → ge(#, x)
val(l(x)) → x
val(n(x, y, z)) → x
min(l(x)) → x
min(n(x, y, z)) → min(y)
max(l(x)) → x
max(n(x, y, z)) → max(z)
bs(l(x)) → true
bs(n(x, y, z)) → and(and(ge(x, max(y)), ge(min(z), x)), and(bs(y), bs(z)))
size(l(x)) → 1(#)
size(n(x, y, z)) → +(+(size(x), size(y)), 1(#))
wb(l(x)) → true
wb(n(x, y, z)) → and(if(ge(size(y), size(z)), ge(1(#), -(size(y), size(z))), ge(1(#), -(size(z), size(y)))), and(wb(y), wb(z)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [13,14,18] contains 9 SCCs with 24 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
QDP
                ↳ QDPOrderProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

MAX(n(x, y, z)) → MAX(z)

The TRS R consists of the following rules:

0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(x, +(y, z)) → +(+(x, y), z)
-(x, #) → x
-(#, x) → #
-(0(x), 0(y)) → 0(-(x, y))
-(0(x), 1(y)) → 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) → 1(-(x, y))
-(1(x), 1(y)) → 0(-(x, y))
not(false) → true
not(true) → false
and(x, true) → x
and(x, false) → false
if(true, x, y) → x
if(false, x, y) → y
ge(0(x), 0(y)) → ge(x, y)
ge(0(x), 1(y)) → not(ge(y, x))
ge(1(x), 0(y)) → ge(x, y)
ge(1(x), 1(y)) → ge(x, y)
ge(x, #) → true
ge(#, 1(x)) → false
ge(#, 0(x)) → ge(#, x)
val(l(x)) → x
val(n(x, y, z)) → x
min(l(x)) → x
min(n(x, y, z)) → min(y)
max(l(x)) → x
max(n(x, y, z)) → max(z)
bs(l(x)) → true
bs(n(x, y, z)) → and(and(ge(x, max(y)), ge(min(z), x)), and(bs(y), bs(z)))
size(l(x)) → 1(#)
size(n(x, y, z)) → +(+(size(x), size(y)), 1(#))
wb(l(x)) → true
wb(n(x, y, z)) → and(if(ge(size(y), size(z)), ge(1(#), -(size(y), size(z))), ge(1(#), -(size(z), size(y)))), and(wb(y), wb(z)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


MAX(n(x, y, z)) → MAX(z)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Combined order from the following AFS and order.
MAX(x1)  =  MAX(x1)
n(x1, x2, x3)  =  n(x2, x3)

Recursive Path Order [2].
Precedence:
n2 > MAX1


The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
                ↳ QDPOrderProof
QDP
                    ↳ PisEmptyProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(x, +(y, z)) → +(+(x, y), z)
-(x, #) → x
-(#, x) → #
-(0(x), 0(y)) → 0(-(x, y))
-(0(x), 1(y)) → 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) → 1(-(x, y))
-(1(x), 1(y)) → 0(-(x, y))
not(false) → true
not(true) → false
and(x, true) → x
and(x, false) → false
if(true, x, y) → x
if(false, x, y) → y
ge(0(x), 0(y)) → ge(x, y)
ge(0(x), 1(y)) → not(ge(y, x))
ge(1(x), 0(y)) → ge(x, y)
ge(1(x), 1(y)) → ge(x, y)
ge(x, #) → true
ge(#, 1(x)) → false
ge(#, 0(x)) → ge(#, x)
val(l(x)) → x
val(n(x, y, z)) → x
min(l(x)) → x
min(n(x, y, z)) → min(y)
max(l(x)) → x
max(n(x, y, z)) → max(z)
bs(l(x)) → true
bs(n(x, y, z)) → and(and(ge(x, max(y)), ge(min(z), x)), and(bs(y), bs(z)))
size(l(x)) → 1(#)
size(n(x, y, z)) → +(+(size(x), size(y)), 1(#))
wb(l(x)) → true
wb(n(x, y, z)) → and(if(ge(size(y), size(z)), ge(1(#), -(size(y), size(z))), ge(1(#), -(size(z), size(y)))), and(wb(y), wb(z)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
QDP
                ↳ QDPOrderProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

MIN(n(x, y, z)) → MIN(y)

The TRS R consists of the following rules:

0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(x, +(y, z)) → +(+(x, y), z)
-(x, #) → x
-(#, x) → #
-(0(x), 0(y)) → 0(-(x, y))
-(0(x), 1(y)) → 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) → 1(-(x, y))
-(1(x), 1(y)) → 0(-(x, y))
not(false) → true
not(true) → false
and(x, true) → x
and(x, false) → false
if(true, x, y) → x
if(false, x, y) → y
ge(0(x), 0(y)) → ge(x, y)
ge(0(x), 1(y)) → not(ge(y, x))
ge(1(x), 0(y)) → ge(x, y)
ge(1(x), 1(y)) → ge(x, y)
ge(x, #) → true
ge(#, 1(x)) → false
ge(#, 0(x)) → ge(#, x)
val(l(x)) → x
val(n(x, y, z)) → x
min(l(x)) → x
min(n(x, y, z)) → min(y)
max(l(x)) → x
max(n(x, y, z)) → max(z)
bs(l(x)) → true
bs(n(x, y, z)) → and(and(ge(x, max(y)), ge(min(z), x)), and(bs(y), bs(z)))
size(l(x)) → 1(#)
size(n(x, y, z)) → +(+(size(x), size(y)), 1(#))
wb(l(x)) → true
wb(n(x, y, z)) → and(if(ge(size(y), size(z)), ge(1(#), -(size(y), size(z))), ge(1(#), -(size(z), size(y)))), and(wb(y), wb(z)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


MIN(n(x, y, z)) → MIN(y)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Combined order from the following AFS and order.
MIN(x1)  =  MIN(x1)
n(x1, x2, x3)  =  n(x2)

Recursive Path Order [2].
Precedence:
n1 > MIN1


The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
QDP
                    ↳ PisEmptyProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(x, +(y, z)) → +(+(x, y), z)
-(x, #) → x
-(#, x) → #
-(0(x), 0(y)) → 0(-(x, y))
-(0(x), 1(y)) → 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) → 1(-(x, y))
-(1(x), 1(y)) → 0(-(x, y))
not(false) → true
not(true) → false
and(x, true) → x
and(x, false) → false
if(true, x, y) → x
if(false, x, y) → y
ge(0(x), 0(y)) → ge(x, y)
ge(0(x), 1(y)) → not(ge(y, x))
ge(1(x), 0(y)) → ge(x, y)
ge(1(x), 1(y)) → ge(x, y)
ge(x, #) → true
ge(#, 1(x)) → false
ge(#, 0(x)) → ge(#, x)
val(l(x)) → x
val(n(x, y, z)) → x
min(l(x)) → x
min(n(x, y, z)) → min(y)
max(l(x)) → x
max(n(x, y, z)) → max(z)
bs(l(x)) → true
bs(n(x, y, z)) → and(and(ge(x, max(y)), ge(min(z), x)), and(bs(y), bs(z)))
size(l(x)) → 1(#)
size(n(x, y, z)) → +(+(size(x), size(y)), 1(#))
wb(l(x)) → true
wb(n(x, y, z)) → and(if(ge(size(y), size(z)), ge(1(#), -(size(y), size(z))), ge(1(#), -(size(z), size(y)))), and(wb(y), wb(z)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
QDP
                ↳ QDPOrderProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

GE(#, 0(x)) → GE(#, x)

The TRS R consists of the following rules:

0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(x, +(y, z)) → +(+(x, y), z)
-(x, #) → x
-(#, x) → #
-(0(x), 0(y)) → 0(-(x, y))
-(0(x), 1(y)) → 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) → 1(-(x, y))
-(1(x), 1(y)) → 0(-(x, y))
not(false) → true
not(true) → false
and(x, true) → x
and(x, false) → false
if(true, x, y) → x
if(false, x, y) → y
ge(0(x), 0(y)) → ge(x, y)
ge(0(x), 1(y)) → not(ge(y, x))
ge(1(x), 0(y)) → ge(x, y)
ge(1(x), 1(y)) → ge(x, y)
ge(x, #) → true
ge(#, 1(x)) → false
ge(#, 0(x)) → ge(#, x)
val(l(x)) → x
val(n(x, y, z)) → x
min(l(x)) → x
min(n(x, y, z)) → min(y)
max(l(x)) → x
max(n(x, y, z)) → max(z)
bs(l(x)) → true
bs(n(x, y, z)) → and(and(ge(x, max(y)), ge(min(z), x)), and(bs(y), bs(z)))
size(l(x)) → 1(#)
size(n(x, y, z)) → +(+(size(x), size(y)), 1(#))
wb(l(x)) → true
wb(n(x, y, z)) → and(if(ge(size(y), size(z)), ge(1(#), -(size(y), size(z))), ge(1(#), -(size(z), size(y)))), and(wb(y), wb(z)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


GE(#, 0(x)) → GE(#, x)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Combined order from the following AFS and order.
GE(x1, x2)  =  GE(x2)
#  =  #
0(x1)  =  0(x1)

Recursive Path Order [2].
Precedence:
# > [GE1, 01]


The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
QDP
                    ↳ PisEmptyProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(x, +(y, z)) → +(+(x, y), z)
-(x, #) → x
-(#, x) → #
-(0(x), 0(y)) → 0(-(x, y))
-(0(x), 1(y)) → 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) → 1(-(x, y))
-(1(x), 1(y)) → 0(-(x, y))
not(false) → true
not(true) → false
and(x, true) → x
and(x, false) → false
if(true, x, y) → x
if(false, x, y) → y
ge(0(x), 0(y)) → ge(x, y)
ge(0(x), 1(y)) → not(ge(y, x))
ge(1(x), 0(y)) → ge(x, y)
ge(1(x), 1(y)) → ge(x, y)
ge(x, #) → true
ge(#, 1(x)) → false
ge(#, 0(x)) → ge(#, x)
val(l(x)) → x
val(n(x, y, z)) → x
min(l(x)) → x
min(n(x, y, z)) → min(y)
max(l(x)) → x
max(n(x, y, z)) → max(z)
bs(l(x)) → true
bs(n(x, y, z)) → and(and(ge(x, max(y)), ge(min(z), x)), and(bs(y), bs(z)))
size(l(x)) → 1(#)
size(n(x, y, z)) → +(+(size(x), size(y)), 1(#))
wb(l(x)) → true
wb(n(x, y, z)) → and(if(ge(size(y), size(z)), ge(1(#), -(size(y), size(z))), ge(1(#), -(size(z), size(y)))), and(wb(y), wb(z)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
QDP
                ↳ QDPOrderProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

GE(1(x), 1(y)) → GE(x, y)
GE(0(x), 0(y)) → GE(x, y)
GE(1(x), 0(y)) → GE(x, y)
GE(0(x), 1(y)) → GE(y, x)

The TRS R consists of the following rules:

0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(x, +(y, z)) → +(+(x, y), z)
-(x, #) → x
-(#, x) → #
-(0(x), 0(y)) → 0(-(x, y))
-(0(x), 1(y)) → 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) → 1(-(x, y))
-(1(x), 1(y)) → 0(-(x, y))
not(false) → true
not(true) → false
and(x, true) → x
and(x, false) → false
if(true, x, y) → x
if(false, x, y) → y
ge(0(x), 0(y)) → ge(x, y)
ge(0(x), 1(y)) → not(ge(y, x))
ge(1(x), 0(y)) → ge(x, y)
ge(1(x), 1(y)) → ge(x, y)
ge(x, #) → true
ge(#, 1(x)) → false
ge(#, 0(x)) → ge(#, x)
val(l(x)) → x
val(n(x, y, z)) → x
min(l(x)) → x
min(n(x, y, z)) → min(y)
max(l(x)) → x
max(n(x, y, z)) → max(z)
bs(l(x)) → true
bs(n(x, y, z)) → and(and(ge(x, max(y)), ge(min(z), x)), and(bs(y), bs(z)))
size(l(x)) → 1(#)
size(n(x, y, z)) → +(+(size(x), size(y)), 1(#))
wb(l(x)) → true
wb(n(x, y, z)) → and(if(ge(size(y), size(z)), ge(1(#), -(size(y), size(z))), ge(1(#), -(size(z), size(y)))), and(wb(y), wb(z)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


GE(0(x), 0(y)) → GE(x, y)
GE(1(x), 0(y)) → GE(x, y)
GE(0(x), 1(y)) → GE(y, x)
The remaining pairs can at least be oriented weakly.

GE(1(x), 1(y)) → GE(x, y)
Used ordering: Combined order from the following AFS and order.
GE(x1, x2)  =  GE(x1, x2)
1(x1)  =  x1
0(x1)  =  0(x1)

Recursive Path Order [2].
Precedence:
[GE2, 01]


The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
QDP
                    ↳ QDPOrderProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

GE(1(x), 1(y)) → GE(x, y)

The TRS R consists of the following rules:

0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(x, +(y, z)) → +(+(x, y), z)
-(x, #) → x
-(#, x) → #
-(0(x), 0(y)) → 0(-(x, y))
-(0(x), 1(y)) → 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) → 1(-(x, y))
-(1(x), 1(y)) → 0(-(x, y))
not(false) → true
not(true) → false
and(x, true) → x
and(x, false) → false
if(true, x, y) → x
if(false, x, y) → y
ge(0(x), 0(y)) → ge(x, y)
ge(0(x), 1(y)) → not(ge(y, x))
ge(1(x), 0(y)) → ge(x, y)
ge(1(x), 1(y)) → ge(x, y)
ge(x, #) → true
ge(#, 1(x)) → false
ge(#, 0(x)) → ge(#, x)
val(l(x)) → x
val(n(x, y, z)) → x
min(l(x)) → x
min(n(x, y, z)) → min(y)
max(l(x)) → x
max(n(x, y, z)) → max(z)
bs(l(x)) → true
bs(n(x, y, z)) → and(and(ge(x, max(y)), ge(min(z), x)), and(bs(y), bs(z)))
size(l(x)) → 1(#)
size(n(x, y, z)) → +(+(size(x), size(y)), 1(#))
wb(l(x)) → true
wb(n(x, y, z)) → and(if(ge(size(y), size(z)), ge(1(#), -(size(y), size(z))), ge(1(#), -(size(z), size(y)))), and(wb(y), wb(z)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


GE(1(x), 1(y)) → GE(x, y)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Combined order from the following AFS and order.
GE(x1, x2)  =  x1
1(x1)  =  1(x1)

Recursive Path Order [2].
Precedence:
trivial


The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
                  ↳ QDP
                    ↳ QDPOrderProof
QDP
                        ↳ PisEmptyProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(x, +(y, z)) → +(+(x, y), z)
-(x, #) → x
-(#, x) → #
-(0(x), 0(y)) → 0(-(x, y))
-(0(x), 1(y)) → 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) → 1(-(x, y))
-(1(x), 1(y)) → 0(-(x, y))
not(false) → true
not(true) → false
and(x, true) → x
and(x, false) → false
if(true, x, y) → x
if(false, x, y) → y
ge(0(x), 0(y)) → ge(x, y)
ge(0(x), 1(y)) → not(ge(y, x))
ge(1(x), 0(y)) → ge(x, y)
ge(1(x), 1(y)) → ge(x, y)
ge(x, #) → true
ge(#, 1(x)) → false
ge(#, 0(x)) → ge(#, x)
val(l(x)) → x
val(n(x, y, z)) → x
min(l(x)) → x
min(n(x, y, z)) → min(y)
max(l(x)) → x
max(n(x, y, z)) → max(z)
bs(l(x)) → true
bs(n(x, y, z)) → and(and(ge(x, max(y)), ge(min(z), x)), and(bs(y), bs(z)))
size(l(x)) → 1(#)
size(n(x, y, z)) → +(+(size(x), size(y)), 1(#))
wb(l(x)) → true
wb(n(x, y, z)) → and(if(ge(size(y), size(z)), ge(1(#), -(size(y), size(z))), ge(1(#), -(size(z), size(y)))), and(wb(y), wb(z)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
QDP
                ↳ QDPOrderProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

BS(n(x, y, z)) → BS(y)
BS(n(x, y, z)) → BS(z)

The TRS R consists of the following rules:

0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(x, +(y, z)) → +(+(x, y), z)
-(x, #) → x
-(#, x) → #
-(0(x), 0(y)) → 0(-(x, y))
-(0(x), 1(y)) → 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) → 1(-(x, y))
-(1(x), 1(y)) → 0(-(x, y))
not(false) → true
not(true) → false
and(x, true) → x
and(x, false) → false
if(true, x, y) → x
if(false, x, y) → y
ge(0(x), 0(y)) → ge(x, y)
ge(0(x), 1(y)) → not(ge(y, x))
ge(1(x), 0(y)) → ge(x, y)
ge(1(x), 1(y)) → ge(x, y)
ge(x, #) → true
ge(#, 1(x)) → false
ge(#, 0(x)) → ge(#, x)
val(l(x)) → x
val(n(x, y, z)) → x
min(l(x)) → x
min(n(x, y, z)) → min(y)
max(l(x)) → x
max(n(x, y, z)) → max(z)
bs(l(x)) → true
bs(n(x, y, z)) → and(and(ge(x, max(y)), ge(min(z), x)), and(bs(y), bs(z)))
size(l(x)) → 1(#)
size(n(x, y, z)) → +(+(size(x), size(y)), 1(#))
wb(l(x)) → true
wb(n(x, y, z)) → and(if(ge(size(y), size(z)), ge(1(#), -(size(y), size(z))), ge(1(#), -(size(z), size(y)))), and(wb(y), wb(z)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


BS(n(x, y, z)) → BS(y)
BS(n(x, y, z)) → BS(z)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Combined order from the following AFS and order.
BS(x1)  =  x1
n(x1, x2, x3)  =  n(x2, x3)

Recursive Path Order [2].
Precedence:
trivial


The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
QDP
                    ↳ PisEmptyProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(x, +(y, z)) → +(+(x, y), z)
-(x, #) → x
-(#, x) → #
-(0(x), 0(y)) → 0(-(x, y))
-(0(x), 1(y)) → 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) → 1(-(x, y))
-(1(x), 1(y)) → 0(-(x, y))
not(false) → true
not(true) → false
and(x, true) → x
and(x, false) → false
if(true, x, y) → x
if(false, x, y) → y
ge(0(x), 0(y)) → ge(x, y)
ge(0(x), 1(y)) → not(ge(y, x))
ge(1(x), 0(y)) → ge(x, y)
ge(1(x), 1(y)) → ge(x, y)
ge(x, #) → true
ge(#, 1(x)) → false
ge(#, 0(x)) → ge(#, x)
val(l(x)) → x
val(n(x, y, z)) → x
min(l(x)) → x
min(n(x, y, z)) → min(y)
max(l(x)) → x
max(n(x, y, z)) → max(z)
bs(l(x)) → true
bs(n(x, y, z)) → and(and(ge(x, max(y)), ge(min(z), x)), and(bs(y), bs(z)))
size(l(x)) → 1(#)
size(n(x, y, z)) → +(+(size(x), size(y)), 1(#))
wb(l(x)) → true
wb(n(x, y, z)) → and(if(ge(size(y), size(z)), ge(1(#), -(size(y), size(z))), ge(1(#), -(size(z), size(y)))), and(wb(y), wb(z)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
QDP
                ↳ QDPOrderProof
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

-1(1(x), 0(y)) → -1(x, y)
-1(0(x), 1(y)) → -1(x, y)
-1(0(x), 0(y)) → -1(x, y)
-1(0(x), 1(y)) → -1(-(x, y), 1(#))
-1(1(x), 1(y)) → -1(x, y)

The TRS R consists of the following rules:

0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(x, +(y, z)) → +(+(x, y), z)
-(x, #) → x
-(#, x) → #
-(0(x), 0(y)) → 0(-(x, y))
-(0(x), 1(y)) → 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) → 1(-(x, y))
-(1(x), 1(y)) → 0(-(x, y))
not(false) → true
not(true) → false
and(x, true) → x
and(x, false) → false
if(true, x, y) → x
if(false, x, y) → y
ge(0(x), 0(y)) → ge(x, y)
ge(0(x), 1(y)) → not(ge(y, x))
ge(1(x), 0(y)) → ge(x, y)
ge(1(x), 1(y)) → ge(x, y)
ge(x, #) → true
ge(#, 1(x)) → false
ge(#, 0(x)) → ge(#, x)
val(l(x)) → x
val(n(x, y, z)) → x
min(l(x)) → x
min(n(x, y, z)) → min(y)
max(l(x)) → x
max(n(x, y, z)) → max(z)
bs(l(x)) → true
bs(n(x, y, z)) → and(and(ge(x, max(y)), ge(min(z), x)), and(bs(y), bs(z)))
size(l(x)) → 1(#)
size(n(x, y, z)) → +(+(size(x), size(y)), 1(#))
wb(l(x)) → true
wb(n(x, y, z)) → and(if(ge(size(y), size(z)), ge(1(#), -(size(y), size(z))), ge(1(#), -(size(z), size(y)))), and(wb(y), wb(z)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


-1(1(x), 0(y)) → -1(x, y)
-1(0(x), 1(y)) → -1(x, y)
-1(0(x), 0(y)) → -1(x, y)
-1(1(x), 1(y)) → -1(x, y)
The remaining pairs can at least be oriented weakly.

-1(0(x), 1(y)) → -1(-(x, y), 1(#))
Used ordering: Combined order from the following AFS and order.
-1(x1, x2)  =  -1(x2)
1(x1)  =  1(x1)
0(x1)  =  0(x1)
-(x1, x2)  =  -
#  =  #

Recursive Path Order [2].
Precedence:
01 > [-^11, 11] > [-, #]


The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
QDP
                    ↳ QDPOrderProof
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

-1(0(x), 1(y)) → -1(-(x, y), 1(#))

The TRS R consists of the following rules:

0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(x, +(y, z)) → +(+(x, y), z)
-(x, #) → x
-(#, x) → #
-(0(x), 0(y)) → 0(-(x, y))
-(0(x), 1(y)) → 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) → 1(-(x, y))
-(1(x), 1(y)) → 0(-(x, y))
not(false) → true
not(true) → false
and(x, true) → x
and(x, false) → false
if(true, x, y) → x
if(false, x, y) → y
ge(0(x), 0(y)) → ge(x, y)
ge(0(x), 1(y)) → not(ge(y, x))
ge(1(x), 0(y)) → ge(x, y)
ge(1(x), 1(y)) → ge(x, y)
ge(x, #) → true
ge(#, 1(x)) → false
ge(#, 0(x)) → ge(#, x)
val(l(x)) → x
val(n(x, y, z)) → x
min(l(x)) → x
min(n(x, y, z)) → min(y)
max(l(x)) → x
max(n(x, y, z)) → max(z)
bs(l(x)) → true
bs(n(x, y, z)) → and(and(ge(x, max(y)), ge(min(z), x)), and(bs(y), bs(z)))
size(l(x)) → 1(#)
size(n(x, y, z)) → +(+(size(x), size(y)), 1(#))
wb(l(x)) → true
wb(n(x, y, z)) → and(if(ge(size(y), size(z)), ge(1(#), -(size(y), size(z))), ge(1(#), -(size(z), size(y)))), and(wb(y), wb(z)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


-1(0(x), 1(y)) → -1(-(x, y), 1(#))
The remaining pairs can at least be oriented weakly.
none
Used ordering: Combined order from the following AFS and order.
-1(x1, x2)  =  -1(x1)
0(x1)  =  0(x1)
1(x1)  =  1(x1)
-(x1, x2)  =  x1
#  =  #

Recursive Path Order [2].
Precedence:
[-^11, 01, 11, #]


The following usable rules [14] were oriented:

-(0(x), 0(y)) → 0(-(x, y))
-(1(x), 0(y)) → 1(-(x, y))
-(x, #) → x
0(#) → #
-(1(x), 1(y)) → 0(-(x, y))
-(0(x), 1(y)) → 1(-(-(x, y), 1(#)))
-(#, x) → #



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
                  ↳ QDP
                    ↳ QDPOrderProof
QDP
                        ↳ PisEmptyProof
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(x, +(y, z)) → +(+(x, y), z)
-(x, #) → x
-(#, x) → #
-(0(x), 0(y)) → 0(-(x, y))
-(0(x), 1(y)) → 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) → 1(-(x, y))
-(1(x), 1(y)) → 0(-(x, y))
not(false) → true
not(true) → false
and(x, true) → x
and(x, false) → false
if(true, x, y) → x
if(false, x, y) → y
ge(0(x), 0(y)) → ge(x, y)
ge(0(x), 1(y)) → not(ge(y, x))
ge(1(x), 0(y)) → ge(x, y)
ge(1(x), 1(y)) → ge(x, y)
ge(x, #) → true
ge(#, 1(x)) → false
ge(#, 0(x)) → ge(#, x)
val(l(x)) → x
val(n(x, y, z)) → x
min(l(x)) → x
min(n(x, y, z)) → min(y)
max(l(x)) → x
max(n(x, y, z)) → max(z)
bs(l(x)) → true
bs(n(x, y, z)) → and(and(ge(x, max(y)), ge(min(z), x)), and(bs(y), bs(z)))
size(l(x)) → 1(#)
size(n(x, y, z)) → +(+(size(x), size(y)), 1(#))
wb(l(x)) → true
wb(n(x, y, z)) → and(if(ge(size(y), size(z)), ge(1(#), -(size(y), size(z))), ge(1(#), -(size(z), size(y)))), and(wb(y), wb(z)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
QDP
                ↳ QDPOrderProof
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

+1(0(x), 0(y)) → +1(x, y)
+1(1(x), 1(y)) → +1(x, y)
+1(x, +(y, z)) → +1(x, y)
+1(1(x), 0(y)) → +1(x, y)
+1(0(x), 1(y)) → +1(x, y)
+1(x, +(y, z)) → +1(+(x, y), z)
+1(1(x), 1(y)) → +1(+(x, y), 1(#))

The TRS R consists of the following rules:

0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(x, +(y, z)) → +(+(x, y), z)
-(x, #) → x
-(#, x) → #
-(0(x), 0(y)) → 0(-(x, y))
-(0(x), 1(y)) → 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) → 1(-(x, y))
-(1(x), 1(y)) → 0(-(x, y))
not(false) → true
not(true) → false
and(x, true) → x
and(x, false) → false
if(true, x, y) → x
if(false, x, y) → y
ge(0(x), 0(y)) → ge(x, y)
ge(0(x), 1(y)) → not(ge(y, x))
ge(1(x), 0(y)) → ge(x, y)
ge(1(x), 1(y)) → ge(x, y)
ge(x, #) → true
ge(#, 1(x)) → false
ge(#, 0(x)) → ge(#, x)
val(l(x)) → x
val(n(x, y, z)) → x
min(l(x)) → x
min(n(x, y, z)) → min(y)
max(l(x)) → x
max(n(x, y, z)) → max(z)
bs(l(x)) → true
bs(n(x, y, z)) → and(and(ge(x, max(y)), ge(min(z), x)), and(bs(y), bs(z)))
size(l(x)) → 1(#)
size(n(x, y, z)) → +(+(size(x), size(y)), 1(#))
wb(l(x)) → true
wb(n(x, y, z)) → and(if(ge(size(y), size(z)), ge(1(#), -(size(y), size(z))), ge(1(#), -(size(z), size(y)))), and(wb(y), wb(z)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


+1(1(x), 1(y)) → +1(x, y)
+1(x, +(y, z)) → +1(x, y)
+1(0(x), 1(y)) → +1(x, y)
+1(x, +(y, z)) → +1(+(x, y), z)
The remaining pairs can at least be oriented weakly.

+1(0(x), 0(y)) → +1(x, y)
+1(1(x), 0(y)) → +1(x, y)
+1(1(x), 1(y)) → +1(+(x, y), 1(#))
Used ordering: Combined order from the following AFS and order.
+1(x1, x2)  =  +1(x2)
0(x1)  =  x1
1(x1)  =  1(x1)
+(x1, x2)  =  +(x1, x2)
#  =  #

Recursive Path Order [2].
Precedence:
11 > [+^11, +2] > #


The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
QDP
                    ↳ DependencyGraphProof
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

+1(0(x), 0(y)) → +1(x, y)
+1(1(x), 0(y)) → +1(x, y)
+1(1(x), 1(y)) → +1(+(x, y), 1(#))

The TRS R consists of the following rules:

0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(x, +(y, z)) → +(+(x, y), z)
-(x, #) → x
-(#, x) → #
-(0(x), 0(y)) → 0(-(x, y))
-(0(x), 1(y)) → 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) → 1(-(x, y))
-(1(x), 1(y)) → 0(-(x, y))
not(false) → true
not(true) → false
and(x, true) → x
and(x, false) → false
if(true, x, y) → x
if(false, x, y) → y
ge(0(x), 0(y)) → ge(x, y)
ge(0(x), 1(y)) → not(ge(y, x))
ge(1(x), 0(y)) → ge(x, y)
ge(1(x), 1(y)) → ge(x, y)
ge(x, #) → true
ge(#, 1(x)) → false
ge(#, 0(x)) → ge(#, x)
val(l(x)) → x
val(n(x, y, z)) → x
min(l(x)) → x
min(n(x, y, z)) → min(y)
max(l(x)) → x
max(n(x, y, z)) → max(z)
bs(l(x)) → true
bs(n(x, y, z)) → and(and(ge(x, max(y)), ge(min(z), x)), and(bs(y), bs(z)))
size(l(x)) → 1(#)
size(n(x, y, z)) → +(+(size(x), size(y)), 1(#))
wb(l(x)) → true
wb(n(x, y, z)) → and(if(ge(size(y), size(z)), ge(1(#), -(size(y), size(z))), ge(1(#), -(size(z), size(y)))), and(wb(y), wb(z)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [13,14,18] contains 2 SCCs.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
                  ↳ QDP
                    ↳ DependencyGraphProof
                      ↳ AND
QDP
                        ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

+1(1(x), 1(y)) → +1(+(x, y), 1(#))

The TRS R consists of the following rules:

0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(x, +(y, z)) → +(+(x, y), z)
-(x, #) → x
-(#, x) → #
-(0(x), 0(y)) → 0(-(x, y))
-(0(x), 1(y)) → 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) → 1(-(x, y))
-(1(x), 1(y)) → 0(-(x, y))
not(false) → true
not(true) → false
and(x, true) → x
and(x, false) → false
if(true, x, y) → x
if(false, x, y) → y
ge(0(x), 0(y)) → ge(x, y)
ge(0(x), 1(y)) → not(ge(y, x))
ge(1(x), 0(y)) → ge(x, y)
ge(1(x), 1(y)) → ge(x, y)
ge(x, #) → true
ge(#, 1(x)) → false
ge(#, 0(x)) → ge(#, x)
val(l(x)) → x
val(n(x, y, z)) → x
min(l(x)) → x
min(n(x, y, z)) → min(y)
max(l(x)) → x
max(n(x, y, z)) → max(z)
bs(l(x)) → true
bs(n(x, y, z)) → and(and(ge(x, max(y)), ge(min(z), x)), and(bs(y), bs(z)))
size(l(x)) → 1(#)
size(n(x, y, z)) → +(+(size(x), size(y)), 1(#))
wb(l(x)) → true
wb(n(x, y, z)) → and(if(ge(size(y), size(z)), ge(1(#), -(size(y), size(z))), ge(1(#), -(size(z), size(y)))), and(wb(y), wb(z)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
                  ↳ QDP
                    ↳ DependencyGraphProof
                      ↳ AND
                        ↳ QDP
QDP
                          ↳ QDPOrderProof
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

+1(0(x), 0(y)) → +1(x, y)
+1(1(x), 0(y)) → +1(x, y)

The TRS R consists of the following rules:

0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(x, +(y, z)) → +(+(x, y), z)
-(x, #) → x
-(#, x) → #
-(0(x), 0(y)) → 0(-(x, y))
-(0(x), 1(y)) → 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) → 1(-(x, y))
-(1(x), 1(y)) → 0(-(x, y))
not(false) → true
not(true) → false
and(x, true) → x
and(x, false) → false
if(true, x, y) → x
if(false, x, y) → y
ge(0(x), 0(y)) → ge(x, y)
ge(0(x), 1(y)) → not(ge(y, x))
ge(1(x), 0(y)) → ge(x, y)
ge(1(x), 1(y)) → ge(x, y)
ge(x, #) → true
ge(#, 1(x)) → false
ge(#, 0(x)) → ge(#, x)
val(l(x)) → x
val(n(x, y, z)) → x
min(l(x)) → x
min(n(x, y, z)) → min(y)
max(l(x)) → x
max(n(x, y, z)) → max(z)
bs(l(x)) → true
bs(n(x, y, z)) → and(and(ge(x, max(y)), ge(min(z), x)), and(bs(y), bs(z)))
size(l(x)) → 1(#)
size(n(x, y, z)) → +(+(size(x), size(y)), 1(#))
wb(l(x)) → true
wb(n(x, y, z)) → and(if(ge(size(y), size(z)), ge(1(#), -(size(y), size(z))), ge(1(#), -(size(z), size(y)))), and(wb(y), wb(z)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


+1(0(x), 0(y)) → +1(x, y)
The remaining pairs can at least be oriented weakly.

+1(1(x), 0(y)) → +1(x, y)
Used ordering: Combined order from the following AFS and order.
+1(x1, x2)  =  +1(x1)
0(x1)  =  0(x1)
1(x1)  =  x1

Recursive Path Order [2].
Precedence:
trivial


The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
                  ↳ QDP
                    ↳ DependencyGraphProof
                      ↳ AND
                        ↳ QDP
                        ↳ QDP
                          ↳ QDPOrderProof
QDP
                              ↳ QDPOrderProof
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

+1(1(x), 0(y)) → +1(x, y)

The TRS R consists of the following rules:

0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(x, +(y, z)) → +(+(x, y), z)
-(x, #) → x
-(#, x) → #
-(0(x), 0(y)) → 0(-(x, y))
-(0(x), 1(y)) → 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) → 1(-(x, y))
-(1(x), 1(y)) → 0(-(x, y))
not(false) → true
not(true) → false
and(x, true) → x
and(x, false) → false
if(true, x, y) → x
if(false, x, y) → y
ge(0(x), 0(y)) → ge(x, y)
ge(0(x), 1(y)) → not(ge(y, x))
ge(1(x), 0(y)) → ge(x, y)
ge(1(x), 1(y)) → ge(x, y)
ge(x, #) → true
ge(#, 1(x)) → false
ge(#, 0(x)) → ge(#, x)
val(l(x)) → x
val(n(x, y, z)) → x
min(l(x)) → x
min(n(x, y, z)) → min(y)
max(l(x)) → x
max(n(x, y, z)) → max(z)
bs(l(x)) → true
bs(n(x, y, z)) → and(and(ge(x, max(y)), ge(min(z), x)), and(bs(y), bs(z)))
size(l(x)) → 1(#)
size(n(x, y, z)) → +(+(size(x), size(y)), 1(#))
wb(l(x)) → true
wb(n(x, y, z)) → and(if(ge(size(y), size(z)), ge(1(#), -(size(y), size(z))), ge(1(#), -(size(z), size(y)))), and(wb(y), wb(z)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


+1(1(x), 0(y)) → +1(x, y)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Combined order from the following AFS and order.
+1(x1, x2)  =  +1(x2)
1(x1)  =  x1
0(x1)  =  0(x1)

Recursive Path Order [2].
Precedence:
[+^11, 01]


The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
                  ↳ QDP
                    ↳ DependencyGraphProof
                      ↳ AND
                        ↳ QDP
                        ↳ QDP
                          ↳ QDPOrderProof
                            ↳ QDP
                              ↳ QDPOrderProof
QDP
                                  ↳ PisEmptyProof
              ↳ QDP
              ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(x, +(y, z)) → +(+(x, y), z)
-(x, #) → x
-(#, x) → #
-(0(x), 0(y)) → 0(-(x, y))
-(0(x), 1(y)) → 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) → 1(-(x, y))
-(1(x), 1(y)) → 0(-(x, y))
not(false) → true
not(true) → false
and(x, true) → x
and(x, false) → false
if(true, x, y) → x
if(false, x, y) → y
ge(0(x), 0(y)) → ge(x, y)
ge(0(x), 1(y)) → not(ge(y, x))
ge(1(x), 0(y)) → ge(x, y)
ge(1(x), 1(y)) → ge(x, y)
ge(x, #) → true
ge(#, 1(x)) → false
ge(#, 0(x)) → ge(#, x)
val(l(x)) → x
val(n(x, y, z)) → x
min(l(x)) → x
min(n(x, y, z)) → min(y)
max(l(x)) → x
max(n(x, y, z)) → max(z)
bs(l(x)) → true
bs(n(x, y, z)) → and(and(ge(x, max(y)), ge(min(z), x)), and(bs(y), bs(z)))
size(l(x)) → 1(#)
size(n(x, y, z)) → +(+(size(x), size(y)), 1(#))
wb(l(x)) → true
wb(n(x, y, z)) → and(if(ge(size(y), size(z)), ge(1(#), -(size(y), size(z))), ge(1(#), -(size(z), size(y)))), and(wb(y), wb(z)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
QDP
                ↳ QDPOrderProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

SIZE(n(x, y, z)) → SIZE(y)
SIZE(n(x, y, z)) → SIZE(x)

The TRS R consists of the following rules:

0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(x, +(y, z)) → +(+(x, y), z)
-(x, #) → x
-(#, x) → #
-(0(x), 0(y)) → 0(-(x, y))
-(0(x), 1(y)) → 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) → 1(-(x, y))
-(1(x), 1(y)) → 0(-(x, y))
not(false) → true
not(true) → false
and(x, true) → x
and(x, false) → false
if(true, x, y) → x
if(false, x, y) → y
ge(0(x), 0(y)) → ge(x, y)
ge(0(x), 1(y)) → not(ge(y, x))
ge(1(x), 0(y)) → ge(x, y)
ge(1(x), 1(y)) → ge(x, y)
ge(x, #) → true
ge(#, 1(x)) → false
ge(#, 0(x)) → ge(#, x)
val(l(x)) → x
val(n(x, y, z)) → x
min(l(x)) → x
min(n(x, y, z)) → min(y)
max(l(x)) → x
max(n(x, y, z)) → max(z)
bs(l(x)) → true
bs(n(x, y, z)) → and(and(ge(x, max(y)), ge(min(z), x)), and(bs(y), bs(z)))
size(l(x)) → 1(#)
size(n(x, y, z)) → +(+(size(x), size(y)), 1(#))
wb(l(x)) → true
wb(n(x, y, z)) → and(if(ge(size(y), size(z)), ge(1(#), -(size(y), size(z))), ge(1(#), -(size(z), size(y)))), and(wb(y), wb(z)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


SIZE(n(x, y, z)) → SIZE(y)
SIZE(n(x, y, z)) → SIZE(x)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Combined order from the following AFS and order.
SIZE(x1)  =  x1
n(x1, x2, x3)  =  n(x1, x2)

Recursive Path Order [2].
Precedence:
trivial


The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
QDP
                    ↳ PisEmptyProof
              ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(x, +(y, z)) → +(+(x, y), z)
-(x, #) → x
-(#, x) → #
-(0(x), 0(y)) → 0(-(x, y))
-(0(x), 1(y)) → 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) → 1(-(x, y))
-(1(x), 1(y)) → 0(-(x, y))
not(false) → true
not(true) → false
and(x, true) → x
and(x, false) → false
if(true, x, y) → x
if(false, x, y) → y
ge(0(x), 0(y)) → ge(x, y)
ge(0(x), 1(y)) → not(ge(y, x))
ge(1(x), 0(y)) → ge(x, y)
ge(1(x), 1(y)) → ge(x, y)
ge(x, #) → true
ge(#, 1(x)) → false
ge(#, 0(x)) → ge(#, x)
val(l(x)) → x
val(n(x, y, z)) → x
min(l(x)) → x
min(n(x, y, z)) → min(y)
max(l(x)) → x
max(n(x, y, z)) → max(z)
bs(l(x)) → true
bs(n(x, y, z)) → and(and(ge(x, max(y)), ge(min(z), x)), and(bs(y), bs(z)))
size(l(x)) → 1(#)
size(n(x, y, z)) → +(+(size(x), size(y)), 1(#))
wb(l(x)) → true
wb(n(x, y, z)) → and(if(ge(size(y), size(z)), ge(1(#), -(size(y), size(z))), ge(1(#), -(size(z), size(y)))), and(wb(y), wb(z)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
QDP
                ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

WB(n(x, y, z)) → WB(y)
WB(n(x, y, z)) → WB(z)

The TRS R consists of the following rules:

0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(x, +(y, z)) → +(+(x, y), z)
-(x, #) → x
-(#, x) → #
-(0(x), 0(y)) → 0(-(x, y))
-(0(x), 1(y)) → 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) → 1(-(x, y))
-(1(x), 1(y)) → 0(-(x, y))
not(false) → true
not(true) → false
and(x, true) → x
and(x, false) → false
if(true, x, y) → x
if(false, x, y) → y
ge(0(x), 0(y)) → ge(x, y)
ge(0(x), 1(y)) → not(ge(y, x))
ge(1(x), 0(y)) → ge(x, y)
ge(1(x), 1(y)) → ge(x, y)
ge(x, #) → true
ge(#, 1(x)) → false
ge(#, 0(x)) → ge(#, x)
val(l(x)) → x
val(n(x, y, z)) → x
min(l(x)) → x
min(n(x, y, z)) → min(y)
max(l(x)) → x
max(n(x, y, z)) → max(z)
bs(l(x)) → true
bs(n(x, y, z)) → and(and(ge(x, max(y)), ge(min(z), x)), and(bs(y), bs(z)))
size(l(x)) → 1(#)
size(n(x, y, z)) → +(+(size(x), size(y)), 1(#))
wb(l(x)) → true
wb(n(x, y, z)) → and(if(ge(size(y), size(z)), ge(1(#), -(size(y), size(z))), ge(1(#), -(size(z), size(y)))), and(wb(y), wb(z)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


WB(n(x, y, z)) → WB(y)
WB(n(x, y, z)) → WB(z)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Combined order from the following AFS and order.
WB(x1)  =  x1
n(x1, x2, x3)  =  n(x2, x3)

Recursive Path Order [2].
Precedence:
trivial


The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
QDP
                    ↳ PisEmptyProof

Q DP problem:
P is empty.
The TRS R consists of the following rules:

0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(x, +(y, z)) → +(+(x, y), z)
-(x, #) → x
-(#, x) → #
-(0(x), 0(y)) → 0(-(x, y))
-(0(x), 1(y)) → 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) → 1(-(x, y))
-(1(x), 1(y)) → 0(-(x, y))
not(false) → true
not(true) → false
and(x, true) → x
and(x, false) → false
if(true, x, y) → x
if(false, x, y) → y
ge(0(x), 0(y)) → ge(x, y)
ge(0(x), 1(y)) → not(ge(y, x))
ge(1(x), 0(y)) → ge(x, y)
ge(1(x), 1(y)) → ge(x, y)
ge(x, #) → true
ge(#, 1(x)) → false
ge(#, 0(x)) → ge(#, x)
val(l(x)) → x
val(n(x, y, z)) → x
min(l(x)) → x
min(n(x, y, z)) → min(y)
max(l(x)) → x
max(n(x, y, z)) → max(z)
bs(l(x)) → true
bs(n(x, y, z)) → and(and(ge(x, max(y)), ge(min(z), x)), and(bs(y), bs(z)))
size(l(x)) → 1(#)
size(n(x, y, z)) → +(+(size(x), size(y)), 1(#))
wb(l(x)) → true
wb(n(x, y, z)) → and(if(ge(size(y), size(z)), ge(1(#), -(size(y), size(z))), ge(1(#), -(size(z), size(y)))), and(wb(y), wb(z)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.